Entrer un problème...
Ensembles finis Exemples
Étape 1
Étape 1.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.2
Appliquez la règle pour réécrire l’élévation à la puissance comme un radical.
Étape 1.3
Toute valeur élevée à est la base elle-même.
Étape 2
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 3
Étape 3.1
Pour retirer le radical du côté gauche de l’équation, élevez au carré les deux côtés de l’équation.
Étape 3.2
Simplifiez chaque côté de l’équation.
Étape 3.2.1
Utilisez pour réécrire comme .
Étape 3.2.2
Simplifiez le côté gauche.
Étape 3.2.2.1
Simplifiez .
Étape 3.2.2.1.1
Multipliez les exposants dans .
Étape 3.2.2.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.2.2.1.1.2
Annulez le facteur commun de .
Étape 3.2.2.1.1.2.1
Annulez le facteur commun.
Étape 3.2.2.1.1.2.2
Réécrivez l’expression.
Étape 3.2.2.1.2
Simplifiez
Étape 3.2.3
Simplifiez le côté droit.
Étape 3.2.3.1
L’élévation de à toute puissance positive produit .
Étape 3.3
Soustrayez des deux côtés de l’équation.
Étape 4
Définissez le radicande dans inférieur à pour déterminer où l’expression est indéfinie.
Étape 5
Soustrayez des deux côtés de l’inégalité.
Étape 6
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 7